Dynamics of domains switching in epitaxial BaTiO$_3$/SrTiO$_3$ superlattices from first principles1 SERGEY LISENKOV, INNA PONOMAREVA, LAURENT BELLAICHE, University of Arkansas — Superlattices (SL) consisting of alternating layers of perovskite oxides can possess properties that are dramatically different from those of bulk ferroelectrics. [BaTiO$_3$]$_n$/[SrTiO$_3$]$_n$ (BT/ST) SL with relatively large periods exhibit novel nanostripe domains for some specific epitaxial strains and within a particular temperature window [1]. Here, an effective Hamiltonian approach is used within molecular dynamics method to predict the evolution of these nanostripe domains in BT/ST SL under an ac electric field applied along the SL growth direction. For any investigated frequency, four different regions occur, depending on the magnitude of the electric field: Region I that consists of nanostripe domains in both BT and ST layers; Region II that exhibits nanostripe domains in BT layers while possessing monodomains in ST layers; Region III where bubble domains in BT layers coexist with monodomains in ST layers; and Region IV where monodomains form in both BT and ST layers. The dependency of the domain velocities, activation and critical fields on the field frequency is revealed.

1Supported by NSF grants DMR-0404335,DMR-0080054,DMR-0701558, by ONR grant N00014-04-1-0413,by DOE grant DE-FG02-05ER46188

Sergey Lisenkov
Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA

Date submitted: 20 Nov 2007

Electronic form version 1.4