Abstract Submitted for the MAR08 Meeting of The American Physical Society

High-Resolution ¹²⁵Te NMR of Novel Thermoelectric Materials E.M. LEVIN, K. SCHMIDT-ROHR, B.A. COOK, Ames Laboratory DOE and Iowa State University, MI-KYUNG HAN, M.G. KANATZIDIS, Northwestern University — Several novel Te-based thermoelectric materials with extraordinary figure of merit $ZT \ge 1.4$ have been studied by high-resolution 25 kHz magic angle spinning ¹²⁵Te nuclear magnetic resonance (NMR) in order to investigate variations in composition on the nano-scale. A 20-fold wider 125 Te NMR signal of both AgSbGe₄Te₆ and $AgSbGe_{5.67}Te_{7.67}$ (~90 kHz) compared to that of PbTe (4.5 kHz) indicates a variation of shifts due to local composition fluctuations. The similar total shift of the main peak in $Ag_{0.53}Pb_{18}Sb_{1.2}Te_{20}$ (-1790 ppm) and PbTe (-1750 ppm) and similarly long T_2 relaxation time show that the majority of Te atoms in both materials has a similar environment. A second peak in $Ag_{0.53}Pb_{18}Sb_{1.2}Te_{20}$ at -1600 ppm shows the presence of a second type of Te site, accounting for $\sim 1/3$ of all Te. These are apparently located in $\{Ag, Sb\}$ -rich inclusions, as indicated by a much shorter T_2 , which can be due to the effect of quadrupolar relaxation of 121 Sb or 123 Sb (spin 5/2 or 7/2, respectively) on ¹²⁵Te. Our data confirm suggestions made by Hsu *et al.*, Science (2004) and by Chen et al., Appl. Phys. Lett. (2005) about the presence of nano-scale inclusions in $Ag_{0.53}Pb_{18}Sb_{1.2}Te_{20}$, which result in low lattice thermal conductivity and high ZT.

> E.M. Levin Ames Laboratory DOE and Iowa State University

Date submitted: 21 Nov 2007

Electronic form version 1.4