Abstract Submitted for the MAR08 Meeting of The American Physical Society

Magnetic properties of organic-based Ni[TCNE](MeCN)₂][BF₄] magnet.¹ KONSTANTIN POKHODNYA, CNSE NDSU, Ohio Sate University, University of Utah, VICTOR DOKUKIN, JOEL S. MILLER, University of Utah — A new organic-based magnet of Ni[TCNE][BF₄](MeCN)_{2- δ} (1) composition (δ = 0.15; TCNE = tetracyanoethylene) was synthesized via reaction of NBu₄(TCNE) and $Ni(NCMe)_6(BF_4)_2$ in CH₂Cl₂. Zero field cooled and field cooled magnetizations, $M(T)_{ZFC}$ and $M(T)_{FC}$, at 0.5 mT rise sharply below 70 K indicative of an onset of a magnetic transition. $M(T)_{ZFC}$ reaches maximum at 25 K followed by a rapid decrease suggesting antiferromagnetic (AF) interaction. In contrast, $M(T)_{FC}$ rises upon further cooling signifying a strong irreversibility in accord with sharp increase of a remanant magnetization below 30 K and hysteretic behavior of M(H). The M(H) at 2 K increases rapidly with field and approaches saturation above ~ 0.5 T. At 9 T M(H) reaches 2.24 μ_B that is significantly higher than 1.30 μ_B expected for AF coupled Ni(II) S = 1 and $[TCNE]^-$ (S = 1/2) suggesting a ferromagnetic (FM) interaction. The unpaired Ni^{II} spins and those on the [TCNE]⁻ reside in orthogonal orbitals resulting in FM coupling. Assuming that similarly to $Fe[TCNE][FeCl_4](MeCN)_2$ 1 consists of $Ni^{II} - \mu_4$ - $[TCNE]^-$ layers we believe that the decrease of $M(T)_{ZFC}$ below 25 K is due to AF coupling between the layers while the interaction within the layer is FM in contrast to the AF one reported for Fe, V, and Mn analogues.

¹Supported in part by DOE (DE-FG03-93ER45504, DE FG 02-86BR45271 and DE-FG02-01ER45931) and AFOSR (F49620-03-1-0175) and NSF ND EPSCoR EPS-0447679 grants.

Konstantin Pokhodnya CNSE NDSU

Date submitted: 21 Nov 2007

Electronic form version 1.4