Magnetic properties of organic-based Ni[TCNE](MeCN)$_2$[BF$_4$] magnet.1 KONSTANTIN POKHODNYA, CNSE NDSU, Ohio State University, University of Utah, VICTOR DOKUKIN, JOEL S. MILLER, University of Utah — A new organic-based magnet of Ni[TCNE][BF$_4$](MeCN)$_{2-\delta}$ (1) composition ($\delta = 0.15$; TCNE = tetracyanoethylene) was synthesized via reaction of NBu$_4$(TCNE) and Ni(NCMe)$_6$(BF$_4$)$_2$ in CH$_2$Cl$_2$. Zero field cooled and field cooled magnetizations, $M(T)_{ZFC}$ and $M(T)_{FC}$, at 0.5 mT rise sharply below 70 K indicative of an onset of a magnetic transition. $M(T)_{ZFC}$ reaches maximum at 25 K followed by a rapid decrease suggesting antiferromagnetic (AF) interaction. In contrast, $M(T)_{FC}$ rises upon further cooling signifying a strong irreversibility in accord with sharp increase of a remanant magnetization below 30 K and hysteretic behavior of $M(H)$. The $M(H)$ at 2 K increases rapidly with field and approaches saturation above ~ 0.5 T. At 9 T $M(H)$ reaches 2.24 μ_B that is significantly higher than 1.30 μ_B expected for AF coupled Ni(II) $S = 1$ and [TCNE]$^-$ ($S = 1/2$) suggesting a ferromagnetic (FM) interaction. The unpaired NiII spins and those on the [TCNE]$^-$ reside in orthogonal orbitals resulting in FM coupling. Assuming that similarly to Fe[TCNE][FeCl$_4$](MeCN)$_2$\textsubscript{1} consists of NiII - μ_4-[TCNE]$^-$ layers we believe that the decrease of $M(T)_{ZFC}$ below 25 K is due to AF coupling between the layers while the interaction within the layer is FM in contrast to the AF one reported for Fe, V, and Mn analogues.

1Supported in part by DOE (DE-FG03-93ER45504, DE-FG02-86BR45271 and DE-FG02-01ER45931) and AFOSR (F49620-03-1-0175) and NSF ND EPSCoR EPS-0447679 grants.

Konstantin Pokhodnya
CNSE NDSU

Date submitted: 21 Nov 2007
Electronic form version 1.4