Maximally-localized Wannier functions for GW quasiparticles

D.R. HAMANN, DAVID VANDERBILT, Department of Physics and Astronomy, Rutgers University — Recent efforts carrying the GW many-body approximation to self-consistency have given improved electronic-structure results. However, one is left with self-energy operators only on the grid of \mathbf{k} points used for Brillouin-zone integration, unlike the case of DFT where the local self-consistent potential allows calculation of the band structure on arbitrary \mathbf{k} points (e.g., along symmetry lines). As maximally-localized Wannier functions (MLWF) provide a basis for a highly accurate approach to band interpolation, we have combined the WANNIER90 code for MLWF with the self-consistent GW capabilities of the ABINIT code to efficiently extend the GW grid calculation to a full band structure. MLWF also provide an intuitive picture of the orbital character and bonding of groups of bands, as well as a quantitatively accurate measure of electric polarization. Differences between quasiparticle MLWF and their LDA counterparts examined to date (Si and perovskite SrZrS$_3$) have proven small, but the visualization of significant many-body effects through MLWF remains an intriguing possibility.

D. R. Hamann
Department of Physics and Astronomy, Rutgers University

Date submitted: 21 Nov 2007 Electronic form version 1.4