Abstract Submitted for the MAR08 Meeting of The American Physical Society

Stability and lattice dynamics of SiO_2 cristobalite SINISA COH, DAVID VANDERBILT, Department of Physics and Astronomy, Rutgers University — Among the phases of SiO_2 are alpha and beta cristobalite. Despite early indications that the higher-temperature beta phase might be cubic (Fd3m), it is now accepted that it is in fact tetragonal $(I\overline{4}2d)$, and that the experiments suggesting a cubic structure were averaging spatially or dynamically over tetragonal domains. Recently, Zhang and Scott (J. Phys. Cond.Matt. 19, 275201) suggested that the lower-temperature alpha phase, widely accepted to be tetragonal $(P4_12_12)$, might be an artifact in a similar way. With this motivation we investigate the energy landscape in the vicinity of cristobalite phases using first-principles calculations. We use the ABINIT implementation of density-functional theory in a plane-wave pseudopotential framework. We find that both the $P4_12_12$ alpha and $\overline{I42}d$ beta phases are local minima, thus reinforcing that the identification of the alpha phase as belonging to the $P4_12_12$ structure. We compute the frequencies of phonon modes at high-symmetry k-points in both structures and compare with experiment. We also identify a minimum-energy path connecting the alpha and beta phases through an intermediate orthorhombic phase $(P2_12_12_1)$, and find a surprisingly low barrier of $\sim 5 \text{ meV}$ per formula unit. We note that a simple rigid-unit mode picture gives a good rough description of these energetics, and we map out the minimum-energy path in the space of rigid unit rotations in a physically insightful way.

> Sinisa Coh Department of Physics and Astronomy, Rutgers University

Date submitted: 21 Nov 2007

Electronic form version 1.4