Abstract Submitted for the MAR08 Meeting of The American Physical Society

Galvanomagnetic and thermomagnetic properties of $AgSbTe_2^1$ VLADIMIR JOVOVIC, JOSEPH HEREMANS, The Ohio State University — We report here data on the electrical resistivity, magnetoresistance, Hall effect, thermoelectric power, magneto-Seebeck and transverse Nernst-Ettingshausen coefficients of high-quality crystals of AgSbTe₂, measured from 77 to 400 K in magnetic fields up to 2 Tesla. Thermal conductivity data are also reported in samples with a much higher carrier concentration than those used in our other work.¹ From an analysis of these data, we conclude AgSbTe₂ to be a very narrow-gap semiconductor (Eg \approx 7.6 ± 3 meV) with $\sim 5 \times 10^{19}$ cm⁻³ holes in a valence band with a high density of states and thermally excited $\sim 10^{17}$ cm⁻³ high-mobility (2,200 cm²/Vs) electrons at 300 K. The estimated hole density-of-states effective masses, including Fermi pocket degeneracy, is 2.5 ± 0.5 free electron masses; the electron mass is about two orders of magnitude smaller, but the exact value cannot be resolved. The lattice term dominates the thermal conductivity, ¹ and the electronic contribution in samples with both electrons and holes present is in turn dominated the ambipolar term. The low thermal conductivity and very large hole mass of AgSbTe₂ make it a most promising p-type thermoelectric material. [1] Lattice thermal conductivity of AgSbTe₂, D. T. Morelli, V. Jovovic, S. J. Tiagarajan, and J. P. Heremans, Abstract reported here.

¹This work is supported by BSST-Amerigon.

Vladimir Jovovic The Ohio State University

Date submitted: 21 Nov 2007

Electronic form version 1.4