A singlet-pairing superconductor is always also a super-spin-current-conductor.1 CHIA-REN HU, Texas A&M University — A heuristic argument and a simple theory are used to show that, as a fundamental difference between BEC and BCS condensation of fermion pairs, the later, even for singlet pairing, can carry a sizable dissipation-less spin-current below practically the same T_C. The heuristic argument is based on the similarity between a spin-current carried by a singlet-pairing condensate and (coherent) partner changing in a dancing hall. Simple theory: We consider singlet pairing in a normal metal carrying a moderate spin-current, which causes the spin-up- and -down Fermi surfaces (FSs) to be shifted in the momentum space by $\pm q/2$. $[(k,\uparrow),(-k,\downarrow)]$-pairing is clearly still possible over the entire FSs. To favor a spin current in the system, we introduce a vector Lagrange multiplier \mathbf{v}_sp, and add $-\mathbf{v}_sp \Sigma_{k,\sigma,\sigma'} \hbar \mathbf{k} \mathbf{e}_{k,\sigma} \mathbf{e}_{k,\sigma}$ to the Hamiltonian. Since time-reversal invariance is not broken, negligible changes to all properties of the singlet-pairing state follow, and the system remains fully gapped. No depairing can be induced even for a sizable spin current. Two experimental tests of this prediction will be discussed.

1arXiv cond-mat/0711.3020.

Chia-Ren Hu
Texas A&M University

Date submitted: 22 Nov 2007
Electronic form version 1.4