Enhanced tunneling in a magnetic field BORIS IVLEV — As known, a probability of quantum tunneling through a static potential barrier $U(x)$ can be substantially reduced by a static magnetic field H_z. This happens due to increase of the effective barrier height caused by Landau’s gauge potential in a magnetic field (the same potential results in Landau levels). There is an exponentially small current in the direction of tunneling, x. An underbarrier current in the direction perpendicular to tunneling, y, is not small. If the potential barrier $U(x,y)$ depends also on the coordinate y, a new unexpected scenario can occur. Now the partial de Broglie waves, generated under the barrier, are not collected to the current in the y direction only but can be reflected by the potential $U(x,y)$. An interference of those underbarrier waves after reflections can result in a peak of the particle density at a classically allowed region close to the conventional exit point from under the barrier. At the certain magnetic field, $H_z = H_R$, the peak amplitude is not exponentially small (Euclidean resonance). The same phenomenon can occur in tunneling through nonstationary barriers and is expected for photon tunneling when a refractive index is slightly inhomogeneous in the tunnel region.

Boris Ivlev
University of San Luis Potosi, University of South Carolina

Date submitted: 22 Nov 2007 Electronic form version 1.4