Abstract Submitted for the MAR08 Meeting of The American Physical Society

Giant Hall Effect in Laterally Inhomogeneous 2D Electron Gas

HANG XIE, PING SHENG, Department of Physics, HongKong University of Science and Technology — Giant Hall effect has been observed in non-magnetic granular metals at concentration close to the quantum percolation threshold [1], attributable to quantum interference effect. In this work we numerically simulate the Hall effect for 2D electron gas in a laterally inhomogeneous structure. At scales smaller than the electron dephasing length, we obtain the Hall coefficient of 2DEG by solving Schrodinger's equation, with 4 leads connected to the sample. It is shown that for special (laterally) nano-scaled structures, the Hall coefficient can be enhanced by at least 3 orders of magnitude. We have also simulated the effect of assembling such structures into a macroscopic sample, by solving the Laplace equation.

[1] X. X. Zhang, C. Wan, H. Liu, Z. Q. Li, P. Sheng and J. J. Lin, Phys. Rev. Lett. 86, 5562-65, (2001).

Hang Xie Dept. of Physics, HongKong University of Science and Technology, Clear Water Bay, Hong Kong, China

Date submitted: 23 Nov 2007 Electronic form version 1.4