KTi(SO$_4$)$_2$.H$_2$O - a possible candidate for a new spin-Pierles system

DEEPA KASINATHAN, MPI CPfS - Dresden, Germany, GORAN NILSEN, HENRIK RONNOW, LQM-EPFL, Lausanne, Switzerland, STEFAN-LUDWIG DRECHSLER, IFW Dresden, Germany, HELGE ROSNER, MPI CPfS, Dresden, Germany — Recently a large number of compounds belonging to the family of J_1-J_2 chain models with competing ferromagnetic (FM) and antiferromagnetic (AFM) interactions have been discovered. In most cases, FM-J_1 and AFM-J_2 is observed, leading to helical order with no spin gap (for frustration ratio $\alpha = \frac{J_1}{J_2} \geq -0.25$). Systems with both J_1 and J_2 being AFM causing a spin gap are rather rare. The thermodynamic data of the recently prepared KTi(SO$_4$)$_2$.H$_2$O reveal that this system is a quasi 1D spin 1/2 chain compound with both J_1 and J_2 being AFM, and a frustration ratio $\alpha \approx 0.29$. Here we report the results of electronic structure calculations within the LSDA+U method along with tight-binding models. Our calculations confirm that both J_1 and J_2 are AFM. In contrast to the experiments we obtain a larger α, slightly depending on the choice of the Coulomb repulsion U. Therefore KTi(SO$_4$)$_2$.H$_2$O might be a new candidate for a spin-Pierles ground state. A brief comparison with other systems belonging to the class of frustrated chain materials is given with respect to their position in the general phase diagram of the 1D J_1 - J_2 model.