Mutual information in random Boolean models of regulatory networks1 JOSHUA SOCOLAR, Physics Dept. and Center for Systems Biology, Duke University, ANDRE RIBEIRO, Tampere University of Technology, BJÖRN SAMUELSSON, Lund University, JASON LLOYD-PRICE, STUART KAUFFMAN, University of Calgary — In a large, complex network of interacting elements, such as a genetic regulatory network within a cell, the average of the mutual information over all pairs of elements is a global measure of how well the system can coordinate its internal dynamics. We study the average pairwise mutual information I in random Boolean networks (RBNs) as a function of the distribution of Boolean rules implemented at each element, assuming that the links in the network are randomly placed. As the number N of network nodes approaches infinity, NI exhibits a discontinuity at parameter values corresponding to critical RBNs. For finite systems, NI peaks near the critical value, but slightly in the disordered regime for typical parameter variations. The source of high values of NI is the indirect correlations between pairs of elements from different long chains with a common starting point. The contribution from pairs that are directly linked approaches zero for critical networks and peaks deep in the disordered regime.

1Research supported by the National Science Foundation and the Alberta Informatics Circle of Research Excellence.