Abstract Submitted for the MAR08 Meeting of The American Physical Society

Fe-Doped Sno₂ Powders Obtained By Sol-Gel Method, Mechanochemical Alloying, and Thermal Treatment JAIME OSORIO, ANA CALLE, JAILES BELTRAN, LUIS SANCHEZ, Universidad de Antioquia, LIL-IANA TIRADO, Universidad del Quindio, KIYOSHI NOMURA, University of Tokyo, CESAR BARRERO, Universidad de Antioquia, ESTADO SOLIDO TEAM, OPTOELECTRONICA TEAM, APPLIED CHEMISTRY SCHOOL OF ENGI-NEERING TEAM — The present work is aimed to investigate experimental conditions to obtain pure $\operatorname{Sn}_{1-x}\operatorname{Fe}_x\operatorname{O}_{2-\delta}(x=0, 0.05, \text{ and } 0.1)$ powders by three methods: (1) sol-gel method, (2) mechanochemical alloying and (3) thermal treatment. In (1), different precursors were employed: mixtures of Sn^{4+} and Fe^{3+} or Sn^{2+} and Fe^{2+} . In (2), SnO₂ and α -Fe or α -Fe₂O₃ were used as reactants. In (3), the Fe-doped SnO_2 were obtained by mechanochemical milling and thermal treatment. All samples were characterized by X-Ray diffraction (XRD) using Rietveld refinement, Fouriertransformed infrared (FTIR) spectroscopy and room temperature ⁵⁷Fe Mössbauer spectrometry (MS). The XRD patterns of samples prepared by (1) showed only peaks of SnO_2 . The MS showed ferromagnetic and paramagnetic signals. The samples obtained by (2) showed XRD peaks due to SnO_2 (rutile). The MS revealed the presence of Fe^{2+} and Fe^{3+} states as well as α -Fe or α -Fe₂O₃ due to the reactants. In the case of (3) was observed total incorporation of Fe^{3+} in the SnO₂ structure without presence of impurities.

> Jaime Osorio Universidad de Antioquia

Date submitted: 23 Nov 2007

Electronic form version 1.4