Abstract Submitted for the MAR08 Meeting of The American Physical Society

Novel interaction-induced magneto-oscillations in ac conductivity of 2D electron gas TIGRAN SEDRAKYAN, University of Wisconsin-Madison, MIKHAIL RAIKH, University of Utah — We demonstrate that electron-electron interactions in a high-mobility 2D electron gas give rise to the oscillatory correction, $\delta\sigma^{int}(\omega)$, to the ac magnetoconductivity, $\sigma(\omega)$. Similarly to the conventional singleparticle harmonics of the cyclotron resonance, the oscillating correction is periodic in ω_c^{-1} , where ω_c is the cyclotron frequency. However, unlike the single-particle oscillations, which are periodic with ω , the interaction correction is periodic with $\omega^{3/2}$. Oscillatory behavior of the interaction-induced magnetoconductivity develops at very low magnetic fields, $\omega_c \ll \omega$; at such fields the conventional harmonics are suppressed by the disorder. The underlying physical process of the new effect is double backscattering of an electron from the impurity-induced Friedel oscillations. Unlike the case of single-particle oscillations, the electron travels only a small portion of the Larmour circle during the time $\sim \omega^{-1}$ between the two backscattering events.

> Tigran Sedrakyan University of Wisconsin-Madison

Date submitted: 25 Nov 2007

Electronic form version 1.4