Novel interaction-induced magneto-oscillations in ac conductivity of 2D electron gas

TIGRAN SEDRAKYAN, University of Wisconsin-Madison,
MIKHAIL RAIKH, University of Utah — We demonstrate that electron-electron interactions in a high-mobility 2D electron gas give rise to the oscillatory correction, \(\delta \sigma^{\text{int}}(\omega) \), to the ac magnetoconductivity, \(\sigma(\omega) \). Similarly to the conventional single-particle harmonics of the cyclotron resonance, the oscillating correction is periodic in \(\omega_c^{-1} \), where \(\omega_c \) is the cyclotron frequency. However, unlike the single-particle oscillations, which are periodic with \(\omega \), the interaction correction is periodic with \(\omega^{3/2} \). Oscillatory behavior of the interaction-induced magnetoconductivity develops at very low magnetic fields, \(\omega_c \ll \omega \); at such fields the conventional harmonics are suppressed by the disorder. The underlying physical process of the new effect is double backscattering of an electron from the impurity-induced Friedel oscillations. Unlike the case of single-particle oscillations, the electron travels only a small portion of the Larmour circle during the time \(\sim \omega^{-1} \) between the two backscattering events.

Tigran Sedrakyan
University of Wisconsin-Madison

Date submitted: 25 Nov 2007

Electronic form version 1.4