TiO$_2$ nanowire sensitized by natural dyes for solar cell applications1 SHENG MENG, JUN REN, EFTHIMIOS KAXIRAS, Harvard University — We investigate the electronic coupling between a semiconductor TiO$_2$ nanowire and a natural dye sensitizer based on time-dependent first-principles calculations. The model dye molecule, cyanidin is found to dissociate into the quinonoidal form upon adsorption, rendering its highest occupied molecular orbitals (HOMO) located in the middle of TiO$_2$ bandgap and its lowest-unoccupied molecular orbital (LUMO) at the bottom of TiO$_2$ conduction band. The visible light absorption is greatly enhanced with two prominent peaks at 460 nm and 650 nm. The excited electrons are injected into the TiO$_2$ conduction within a ultrafast timescale of <50 fs, with negligible non-radiative energy dissipation and recombination.

1This work is supported in part by DOE CMSNGrant DE-FG02-05ER46226 and Harvard University Center for the Environment.