Abstract Submitted for the MAR08 Meeting of The American Physical Society

D2 Fusion in Ionic Solid + Nanometal Composites TALBOT CHUBB, Physicist Consultant, 5023 N. 38th St., Arlington, VA 22207 — Interfaces between ionic solids and nanometals seem to provide an environment that promotes Bloch deuterium with 2-dimensional lattice symmetry. Electrolysis-loaded powdered ZrO_2 + nanoPd composite produced 10-W excess heat for 400 hr (1.4 x 10⁷ J).¹. This compares with best plasma fusion runs of 16 MW of fusion heat for $\leq 1s$ ($\leq 1.6 \times 10^7$ J). The fusion heat was less than the input energy).² In 2004, Arata and Zhang pressure-loaded ZrO_2 + nanoPd with D_2 at 140 °C and produced an estimated steady 0.6 W of fusion heat.^{3,4} The ionic oxide + nanometal composites absorb abnormal amounts of hydrogen gas.⁵

Scott Chubb Naval Research Laboratory

Date submitted: 25 Nov 2007 Electronic form version 1.4

¹Y. Arata and Y-C Zhang, Proc. Jaspan Acad. 78B, 57 (2002).

²C. Cookson, Financial Times, Energy Section, 14 (9 Nov. 2007).

³Y. Arata and Y-C Zhang, Proc. ICCF12, 44 (2006).

⁴T.A. Chubb, Proc. ICCF13, (submitted 2007).

⁵S-i. Yamaura et al., J. Mater. Res. 17, 1329 (2002).