Orbital Ordering in Room Temperature Ferromagnet Sr$_3$YCo$_4$O$_{10.5}$ Studied by a Resonant X-ray Scattering

HIRONORI NAKAO, TETSUYA MURATA, DAISUKE BIZEN, YOUICH MURAKAMI, Tohoku Univ., SHINTARO ISHIWATA, JST-ERATO, WATARU KOBAYASHI, ICHIRO TERASAKI, Waseda Univ. — Sr$_{1-x}$R$_x$Co$_4$O$_{10.5}$ ($R =$ Y and lanthanide, $0.2 < x < 0.25$) has been found recently as a room temperature ferromagnet with $T_C \sim 340$ K, which is the highest T_C among perovskite Co oxides. The crystal structure is formed with the CoO$_6$ octahedral layers and the CoO$_{4.25}$ layers, which stack along c axis alternatively. By powder x-ray diffraction, the orbital state of Co$^{3+}$ ($3d^6$) was evaluated from the anisotropy of the CoO$_6$ octahedron in the ferromagnetic phase, and the e_g orbital ordering of intermediate spin state was proposed as an origin of the ferromagnetism. [1] Therefore, the orbital ordering of Co ion has been investigated using a resonant x-ray scattering technique, and a signal resonating near Co K-edge was found clearly. We present an antiferro-orbital and spin-state ordering, and the physical properties can be explained by the ordering model. [1] S. Ishiwata et al., Phys. Rev. B 75 (2007) 220406.

Hironori Nakao
Tohoku Univ.

Date submitted: 24 Nov 2007

Electronic form version 1.4