Abstract Submitted for the MAR08 Meeting of The American Physical Society

Location and Magnetic Hyperfine Properties of Mn^{2+} in Silicon. R.H. PINK, SUNY Albany, ARCHANA DUBEY, UCF Orlando, S.R. BADU, SUNY Albany, R.H. SCHEICHER, Uppsala University, Sweden, M.B. HUANG, SUNY Albany, LEE CHOW, UCF Orlando, T.P. DAS, SUNY Albany, UCF Orlando — Crystalline Silicon doped with the transition metal ion Mn^{+2} is ferromagnetic at room temperature and thus potentially a useful material for spintronic applications. In attempting to understand from first principles the location of Mn^{+2} and the electronic structure of the ferromagnetic system we have started work first on the dilute system. We have used the Hartree-Fock cluster procedure to determine the binding energies of the three likely locations for Mn^{2+} , substitutional (S), tetrahedral interstitial (T_i) and hexagonal interstitial (H_i) locations allowing for relaxation of the silicon neighbors. Our calculations show that the H_i location is unstable and the S and T_i are stable. Our nuclear magnetic hyperfine interactions results for ⁵⁵Mn nucleus and ²⁹Si neighbor will be presented and compared with electron spin resonance [1] experimental data.

[1] H.H. Wood bury and G. W. Ludwig Phys. Rev. <u>117</u>,102(1960)

T.P. Das SUNY Albany, UCF Orlando

Date submitted: 26 Nov 2007

Electronic form version 1.4