Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

Hartree-Fock Cluster Study of Electronic Structures and Nuclear Quadrupole Interactions in Solid Nucleobases. R.H. SCHEICHER, Uppsala University, Sweden, ARCHANA DUBEY, UCF Orlando, S.R. BADU, SUNY Albany, H.P. SAHA, UCF Orlando, R.H. PINK, SUNY Albany, K. NAGAMINE, UC Riverside, E. TORIKAI, Yamanashi University, Japan, LEE CHOW, UCF Orlando, T.P. DAS, SUNY Albany, UCF Orlando — In recent work [1] we have studied nucleobases attached to a CH$_3$ group to simulate the influence of their binding to the sugar rings and the phosphate groups in DNA and RNA and the effect of this binding on the nuclear quadrupole interactions of 14N, 17O and 2H nuclei. Our results from this work have indicated that for 17O, the binding to the CH$_3$ group moves our results from the free nucleobases closer to the experimentally observed data [2] in the solid nucleobases. We are now investigating the solid nucleobases by the first–principles Hartree-Fock cluster procedure that we have employed earlier for the halogen molecular solids [3]. Our results for the binding energy of an imidazole molecule in the molecular solid system and the 14N, 17O and 2H nuclear quadrupole interaction parameters will be presented.

T.P. Das
SUNY Albany, UCF Orlando

Date submitted: 26 Nov 2007

Electronic form version 1.4