Abstract Submitted for the MAR08 Meeting of The American Physical Society

Photoemission study of triangular lattices in NiGa₂S₄, FeGa₂S₄, and Fe₂Ga₂S₅¹ KOU TAKUBO, Department of Physics, University of Tokyo, TAKASHI MIZOKAWA, Dept. of Complexity Science and Engineering, Univ. of Tokyo, YUSUKE NAMBU, KEISUKE ONUMA, HIROSHI TONOMURA, OSAMU SAKAI, SATORU NAKATSUJI², YOSHITERU MAENO, Dept. of Physics, Kyoto Univ. — The newly-discovered NiGa₂S₄ (Ni²⁺, S=1) and FeGa₂S₄ (Fe²⁺, S=2) form frozen spin-disordered states within the triangular lattice [1,2]. The spins of both compounds have no long range order even at lowest temperature. We have performed photoemission spectroscopy of NiGa₂S₄, FeGa₂S₄, and Fe₂Ga₂S₅. The photoemission results and subsequent model calculations indicate that the ground state of NiGa₂S₄ has the d^9L character (L is a S 3p hole) and that the strong S 3p hole character of the ground state provides the enhanced superexchange interaction between the third nearest neighbor sites. In contrast, the ground state of FeGa₂S₄ is dominated by the d^6 configuration and the superexchange interactions between the second and third neighbor sites are less important. [1] S. Nakatsuji, et al., Science 309, 1697 (2005). [2] S. Nakatsuji, et al., Phys. Rev. Lett. 99, 157203 (2007).

Kou Takubo Department of Physics, University of Tokyo

Date submitted: 26 Nov 2007 Electronic form version 1.4

¹This work was supported by a Grant in Aid from Ministry of Education, Culture, Sports, Science, and Technology of Japan.

²Another affiliation: Institute for Solid State physics, Univ. of Tokyo