Diameter-dependent conductance oscillations in carbon nanotubes upon torsion. NAGAPRIYA K.S., Weizmann Institute of Science, Rehovot, Israel, TZAHI COHEN-KARNI, LIOR SEGEV, ONIT SRUR-LAVI, SIDNEY COHEN, ERNESTO JOSELEVICH, Weizmann Institute of Science, Rehovot, Israel — Torsion-induced conductance oscillations have been recently observed in multi-wall carbon nanotubes1,2. These oscillations have been interpreted as metal-semiconductor periodic transitions, while an alternative interpretation attributed the phenomenon to changes in registry between the walls. Here we show3 that the period of the oscillations is inversely proportional to the squared diameter of the nanotube ($\delta\phi \sim 1/d^2$). This dependence is theoretically predicted from the shifting of the corners of the first Brillouin zone of graphene across different subbands allowed in the nanotube, whereas a change in registry should give rise to a simple inverse dependence ($\delta\phi \sim 1/d$). Hence, the experimental results validate the interpretation of Fermi level shift across subbands vs. that of registry change, as a source of torsion-induced conductance oscillations in carbon nanotubes.