Abstract Submitted for the MAR08 Meeting of The American Physical Society

Precise control of the Na nonstoichiometry in $Na_x CoO_2$ YOSHI-HIKO OKAMOTO, ATSUSHI NISHIO, YOKO KIUCHI, ZENJI HIROI, Institute for Solid State Physics, Univ. of Tokyo — $Na_x CoO_2$ has been attracting great interests in terms of a correlation between its electronic properties and Na nonstoichiometry. Many groups have reported that a Na rich phase (x ~ 0.7) is a Curie-Weiss metal and a poor phase (x) ~ 0.3) is a Pauli paramagnetic metal. The origin of this difference, however, has not been confirmed yet, mainly because of difficulty in controlling precisely the Na nonstoichiometry. We succeeded in synthesizing a series of polycrystalline samples of $Na_x CoO_2$ with well-controlled Na content by the solid-state reaction instead of the solution reaction previously used. We prepared polycrystalline $Na_x CoO_2$ (0.58 \leq x ≤ 0.63) by a solid-state reaction of Na_{0.71}CoO₂ and Na_{0.5}CoO₂ at 200°C. Furthermore, fine tuning of Na content in the range of 0.62 < x < 0.63 was carried out by a solid-state reaction of Na_{0.62}CoO₂ and $Na_{0.63}CoO_2$. Magnetic susceptibility of Na_xCoO_2 exhibited Curie-Weiss behavior at x ≥ 0.621 while nearly temperature independent paramagnetism at x \leq 0.620. Such a drastic change of magnetism clearly indicates that the magnetic phase boundary is located in an extremely narrow range around x = 0.62. We think that the difference originates from a change of the Fermi surface topology with electron filling probably associated with the dip in the a_{1q} band near the Γ point.

> Yoshihiko Okamoto Institute for Solid State Physics, Univ. of Tokyo

Date submitted: 12 Dec 2007

Electronic form version 1.4