Ligand-receptor binding kinetics in surface-plasmon resonance devices: A Monte Carlo simulation study

MATTHEW T. RAUM, Department of Physics, Virginia Tech, Blacksburg, VA 24061-0435, MANOJ GOPALAKRISHNAN, Harish-Chandra Research Institute, Allahabad 211019, India, KIM FORSTEN-WILLIAMS, Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, UWE C. TAUBER, Department of Physics, Virginia Tech, Blacksburg, VA 24061-0435 — We use lattice Monte-Carlo simulations to probe the kinetics of ligand-receptor association and dissociation. Simulations were run under conditions approximating the geometric configuration of surface plasmon resonance devices. These conditions include viscous flow of ligands over a surface of receptors which is achieved by using a spatially varying biased random walk. Our simulations allow for the occurrence of multiple rebinding events which result in strong deviations from the standard mean-field rate equation approximation. Our simulations also allow us to test improved theoretical predictions for the binding dynamics and to determine their range of applicability.

Research in part funded through the National Science Foundation, NSF DMR-0075725.