Simulation of nonlinear pattern formation dynamics in photoinduced structure change1 KUNIO ISHIDA, Corporate R&D Center, Toshiba Corporation, Japan, KEIICHIRO NASU, Institute of Materials Structure Science, KEK, Japan — We study the nonlinear dynamics of pattern formation triggered by injection of photoexcited states. In order to describe the nonadiabatic transition during the relaxation process, we employ a model of localized electrons coupled with a fully quantized phonon mode, and the time-dependent Schrödinger equation for the model is numerically solved. We found that the photoinduced nucleation process is switched on only when certain amount of excitation energy is supplied in a narrow part of the system, i.e., there exists a smallest cluster of excited molecules which makes the nucleation possible. As a result, the portion of the cooperatively converted molecules is nonlinearly dependent on the photoexcitation strength, which has been observed in various materials.

1This work was supported by the Next Generation Super Computing Project, Nanoscience Program, MEXT, Japan.

Kunio Ishida
Corporate R&D Center, Toshiba Corporation

Date submitted: 29 Nov 2007
Electronic form version 1.4