Contact Percolation in Dense Granular Flow

FUPING ZHOU, ExxonMobil Research and Engineering Company, DENIZ ERTAS, ExxonMobil Research and Engineering — Steady-state rheology of spheres are studied in the dense flow regime with three-dimensional molecular dynamics simulations in two different geometries: Simple shear flow and gravity-driven chute flow. The same set of constitutive equations, which are only a function of the local dimensionless strain rate, \(I \), are found to characterize bulk macroscopic observables such as density, internal Coulomb coefficient and scaled velocity fluctuations in both cases. A transition has been identified at a finite (non-universal) value of \(I = I_c \), corresponding to the percolation transition of the instantaneous contact network. For \(I < I_c \), an infinite contact network spans the system. The flow dilates and the internal Coulomb coefficient increases with increasing \(I \). For \(I > I_c \), the instantaneous contact network is broken into finite clusters. The system dilates further with increasing \(I \) while the internal Coulomb coefficient becomes independent of \(I \), resulting in a maximum tilt angle for steady chute flow. Scaled velocity fluctuations exhibit power-law dependence on \(I \) on both sides of \(I_c \), with a minimum at the transition. The transition is distinct from the “jamming” transition at \(I = 0 \) associated with the rigidity percolation of the contact network.