MAR08-2007-002296

Abstract for an Invited Paper for the MAR08 Meeting of the American Physical Society

Low temperature spin dynamics and high pressure effects in frustrated pyrochlores ISABELLE MIREBEAU, Laboratoire Léon Brillouin CEA/CNRS, CE-Saclay, 91191 Gif sur Yvette France

Frustrated pyrochlores $R_2M_2O_7$, where R^{3+} is a rare earth and M^{4+} a transition or sp metal ion, show a large variety of exotic magnetic states due to the geometrical frustration of the pyrochlore lattice, consisting of corner sharing tetrahedra for both R and M ions. Neutron scattering allows one to measure their magnetic ground state as well as the spin fluctuations, in a microscopic way. An applied pressure may change the subtle energy balance between magnetic interactions, inducing new magnetic states. In this talk, I will review recent neutron results on Terbium pyrochlores, investigated by high pressure neutron diffraction and inelastic neutron scattering. $Tb_2M_2O_7$ pyrochlores show respectively a spin liquid state for M=Ti [1], an ordered spin ice state for M = Sn [2], and a spin glass state with chemical order for M = Mo [3]. In $Tb_2Ti_2O_7$ spin liquid, where only Tb^{3+} ions are magnetic, an applied pressure induces long range antiferromagnetic order due to a small distortion of the lattice and magneto elastic coupling [4]. In $Tb_2Sn_2O_7$, the substitution of Ti^{4+} by the bigger Sn^{4+} ion expands the lattice, inducing a long range ordered *ferromagnetic* state, with the local structure of a spin ice [2] and unconventional spin fluctuations [2,5]. The local ground state and excited crystal field states of the Tb³⁺ ion were recently investigated by inelastic neutron scattering in both compounds [6]. $Tb_2Mo_2O_7$, where Mo^{4+} ions are also magnetic, shows an even more rich behaviour, due to the complex interaction between frustrated Tb and Mo lattices, having respectively localized and itinerant magnetism. In $Tb_2Mo_2O_7$ spin glass, the lattice expansion induced by Tb/La substitution yields an ordered ferromagnetic state, which transforms back to spin glass under applied pressure [7]. New data about the spin fluctuations in these compounds, as measured by inelastic neutron scattering, will be presented. The talk will be dedicated to the memory of Igor Goncharenko, a renowned high pressure and neutron physicist, who died accidentally on Nov. 4th, 2007.

[1] J. S. Gardner *et al.*, Phys. Rev. Lett. **82**, 1012, (1999).

- [2] I. Mirebeau et al., Phys. Rev. Lett. 94, 246402, (2005).
- [3] B. D. Gaulin et al., Phys. Rev. Lett. 69, 3244, (1992).
- [4] I. Mirebeau et al. Nature 420, 54 (2002); Phys. Rev. Lett. 93, 187204, (2004).
- [5] F. Bert et al., Phys. Rev. Lett. 97, 117203, (2006); P. Dalmas de Réotier et al., Phys. Rev. Lett. 96, 127202, (2006).
- [6] I. Mirebeau, P. Bonville, M. Hennion, Phys. Rev. 76, 184436, (2007).
- [7] A. Apetrei et al, Phys. Rev. Lett. 97, 206401, (2006).