Abstract Submitted for the MAR08 Meeting of The American Physical Society

Correlation effects in charge-density wave insulator BaBiO₃ CESARE FRANCHINI, MARTIJN MARSMAN, GEORG KRESSE, Faculty of Physics, University of Vienna and Center for Computational Materials Science — The negative-U nature of BaBiO₃ leads to a charge-ordered insulating state in which pentavalent Bi⁵⁺ coexists with trivalent Bi³⁺. Despite the apparent absence of strong-correlation effects in BaBiO₃ standard density functional (DFT) theory yields a much too small band gap of 0.14 eV. By means of an hybrid-DFT approach combined with self-consistent GW including vertex corrections we investigate the electronic, vibrational and dielectric properties of BaBiO₃. We show that the inclusion of strong-correlation effects increases the band gap up to 1.2 eV, shifts the oxygen breathing modes upwards by ≈ 2 THz and reduces the dielectric constant by a factor of 3. The overall agreement with available experimental data is significantly improved.

Cesare Franchini Faculty of Physics, University of Vienna and Center for Computational Materials Science

Date submitted: 29 Nov 2007

Electronic form version 1.4