UHV Growth of Graphene on SiC

PAUL CAMPBELL, GLENN JERNIGAN, KEITH PERKINS, BRENDA VANMIL, RACHEL MYERS-WARD, KURT GASKILL, JAMES CULBERTSON, JEREMY ROBINSON, ERIC SNOW, Naval Research Laboratory — We report graphene growth on Si- and C-face semi-insulating 6H SiC in UHV by thermal Si desorption/reconstruction of the remaining C. The SiC was etched in H₂ up to 1580 °C to smooth the surface. XPS shows the H₂-etched surfaces are covered by an oxide which desorbs at 1000 °C, resulting in a surface containing excess Si. At 1300 °C, the surface becomes stoichiometric in Si and C and a √3 x √3 R30 LEED pattern is observed. At 1350 °C, we observe a 6√3 x 6√3 R30 LEED pattern develop when graphene has formed, and a 1x1 LEED pattern for graphite films formed at temperatures greater than 1400 °C. Graphene layers were grown under a variety of temperatures and conditions and characterized using XPS, LEED, AFM, Raman spectroscopy, and Hall effect. Top-gated FETs were fabricated with a wide range of gate lengths (1-25 microns) and gate widths (2-130 microns), and transistor operation was obtained for both single and multiple graphene layers.

1Supported by NRL Institute for Nanoscience
2ASEE postdoctoral Associate
3ASEE Postdoctoral Associate
4NRC Postdoctoral Associate

Date submitted: 26 Nov 2007