Abstract Submitted for the MAR08 Meeting of The American Physical Society

Particle Jumps in SiO₂: A Computer Simulation¹ ROBIN BJORKQUIST, Reed College, KATHARINA VOLLMAYR-LEE, Bucknell University, JUERGEN HORBACH, DLR, Koeln, Germany — We use molecular dynamics simulations to investigate the aging dynamics of SiO₂ modeled by the BKS potential. The system is well equilibrated at temperature T_{high} and then quenched to T_{low} . We characterize the dynamics by means of jumps in single-particle trajectories and measure the number of jump events, the number of jumping particles, and jump size. All measured quantities increase with increasing T_{low} and decrease with increasing waiting time. For the largest investigated temperatures T_{low} and for long enough waiting times the system reaches equilibrium and all measured quantities become independent of T_{high} and waiting time.

¹RB thankfully acknowledges support from NSF REU grant PHY-0552790. KVL thanks the Institue of Theoretical Physics, University Goettingen, for hospitality and financial support.

Katharina Vollmayr-Lee Bucknell University

Date submitted: 26 Nov 2007

Electronic form version 1.4