MAR08-2007-002379

Abstract for an Invited Paper for the MAR08 Meeting of the American Physical Society

NMR studies of $Na_xCoO_2^1$

TAKASHI IMAI, McMaster University

Sodium cobaltate Na_xCoO_2 is the parent phase of triangular-lattice superconductor $Na_{1/3}CoO_2$ - $[H_2O]_{4/3}$. Co ions take a mixed-valence state of +4-x in this system. Since Co^{4+} and Co^{3+} possess spin S=1/2 and S=0, respectively, one may view the CoO_2 layers as charge doped S=1/2 triangular-lattice. CoO_2 layers exhibit a rich variety of strongly correlated electron behavior as a function of sodium concentration x, ranging from itinerant antiferromagnet (x \sim 0.84 and 0.5), "Curie-Weiss metal" (x \sim 0.71) to Fermi liquid (x \sim 1/3). In this talk, I will discuss our NMR studies of Na_xCoO_2 for various Na concentration x, with particular emphasis on ^{59}Co evidence for charge ordering in the insulating ground state of $Na_{0.5}CoO_2$ [1-4].

- [1] F.L. Ning et al., arXiv: 0711.4023
- [2] F.C. Chou et al., arXiv: 0709.0085
- [3] F.L. Ning et al., PRL 94, 227004 (2005)
- [4] F.L. Ning et al., PRL 93, 237201 (2004)

¹This work was carried out in collaboration with F.L. Ning, S. Golin, K. Ahilan (McMaster), F.C. Chou, M.-W. Chu, G.J. Shu, F.T. Huang, Woei Wu Pai, H.S. Sheu (National Taiwan University) and P.A. Lee (M.I.T.).