Abstract Submitted for the MAR08 Meeting of The American Physical Society

Microscopic theory of electron spin relaxation in $N@C_{60}^{-1}$ Z.G. YU, SRI International — Endohedral N@C₆₀ exhibits an extremely long electron spin relaxation time and offers a great potential in storing and processing quantum information. Here we present a microscopic theory of electron spin relaxation in $N@C_{60}$. The theory combines (1) the spin-orbit interaction of N 2p electrons, which mixes the ground state ${}^{4}S$ with excited ${}^{2}P$ and ${}^{2}D$ states, and (2) the coupling between the N 2p electrons and C_{60} H_q vibrations, which facilitates transitions between ${}^{2}P$ and ${}^{2}D$ states. The spin relaxation occurs via a two-phonon (Raman) process by absorbing a H_q phonon and emitting another at the (approximately) same frequency. The theory consistently explains measured spin relaxation time T_1 and its temperature dependence, and predicts two distinct spin decoherence T_2 constants. In addition, the excellent agreement between theory and experiment suggests a universal importance of the two-phonon Raman process in determining spin relaxation in nanostructures such as quantum dots, where a one-phonon process is ineffectual in flipping electron spins because of the lack of low-energy phonons in nanostructures.

¹This work was supported by the Office of Basic Energy Sciences, Department of Energy.

Zhi-Gang Yu SRI International

Date submitted: 29 Nov 2007

Electronic form version 1.4