Abstract Submitted for the MAR08 Meeting of The American Physical Society

Nanofilters for high throughput DNA separation NABIL LAACHI, University of Minnesota, CARMELO DECLET, University of Puerto Rico-Mayaguez, CHRISTINA MATSON, Mississippi State University, KEVIN DORF-MAN, University of Minnesota — Nanofilters are a novel class of microfabricated devices for rapidly separating short, rigid DNA. The succession of alternating narrow slits (\sim 50nm) and deep wells (\sim 300nm) is used to trap the DNA, which then escape at a size-dependent rate. Experiments and near-equilibrium theoretical arguments both indicate that smaller DNA travel faster in a weak field, but the separation fails at around 100V/cm. We theoretically show that the speed and performance of the device can be enhanced using high fields of several hundred V/cm. Based on scaling arguments, the separation of short, rod-like DNA molecules at high fields occurs via "torque-assisted escape," which originates from the non-uniform electric field at the slit entrance. The quadratic dependence of the torque on the molecule size indicates that larger molecules will now emerge first; under a high field, the device operates in a band-inverted manner. Brownian dynamics simulation results confirm the mobility increase with size, with a quasi-plateau at very large fields.

> Nabil Laachi University of Minnesota

Date submitted: 29 Nov 2007

Electronic form version 1.4