² Films Fabricated by Ex Situ Annealing of CVD-Grown B Films in Mg Vapor

Abstract Submitted for the MAR08 Meeting of The American Physical Society

Clean Epitaxial MgB MINA HANNA, The University of Houston, SH-UFANG WANG¹, ANDREW DAVID ECK, RUDEGER WILKE, KE CHEN, ARSEN SOUKIASSIAN, CHE-HUI LEE, WENQING DAI, QI LI, JOAN REDWING, DARRELL SCHLOM, XIAOXING XI, The Pennsylvania State University, KAMEL SALAMA, The University of Houston — Epitaxial MgB₂films have been successfully fabricated by ex situ annealing of B films, grown by chemical vapor deposition (CVD), in Mg vapour. The films show a sharp superconducting transition T_c of about 40 K, a low residual resistivity of less than 2 $\mu\Omega$ cm, and a high residual resistivity ratio RRR of about 10. At self field, the value of critical current density J_c for a 3 μ m thick film is 1.7×10^6 Acm⁻² at 5 K and 1.2×10^6 Acm⁻² at 20 K. The high T_c , low residual resistivity, high RRR and high J_c indicate the cleanness and good connectivity of the films. The results demonstrate that the ex situ deposition method can produce clean MgB₂ films with superior superconducting properties, which is significant for applications such as MgB₂ superconducting cavities and coated conductor wires and tapes.

¹Dr. Wang will be presenting

Mina Hanna The University of Houston

Date submitted: 29 Nov 2007 Electronic form version 1.4