Films Fabricated by *Ex Situ* Annealing of CVD-Grown B Films in Mg Vapor

Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

Clean Epitaxial MgB

MINA HANNA, The University of Houston, SH-UFANG WANG\(^1\), ANDREW DAVID ECK, RUDEGER WILKE, KE CHEN, ARSEN SOUKIASSIAN, CHE-HUI LEE, WENQING DAI, QI LI, JOAN REDWING, DARRELL SCHLOM, XIAOXING XI, The Pennsylvania State University, KAMEL SALAMA, The University of Houston — Epitaxial MgB\(_2\) films have been successfully fabricated by *ex situ* annealing of B films, grown by chemical vapor deposition (CVD), in Mg vapour. The films show a sharp superconducting transition \( T_c \) of about 40 K, a low residual resistivity of less than 2 \( \mu \Omega \text{cm} \), and a high residual resistivity ratio RRR of about 10. At self field, the value of critical current density \( J_c \) for a 3 \( \mu \text{m} \) thick film is \( 1.7 \times 10^6 \text{ Acm}^{-2} \) at 5 K and \( 1.2 \times 10^6 \text{ Acm}^{-2} \) at 20 K. The high \( T_c \), low residual resistivity, high RRR and high \( J_c \) indicate the cleanness and good connectivity of the films. The results demonstrate that the *ex situ* deposition method can produce clean MgB\(_2\) films with superior superconducting properties, which is significant for applications such as MgB\(_2\) superconducting cavities and coated conductor wires and tapes.

\(^1\)Dr. Wang will be presenting

Mina Hanna
The University of Houston

Date submitted: 29 Nov 2007

Electronic form version 1.4