Abstract Submitted for the MAR08 Meeting of The American Physical Society

Impurity Decoration for Crystal Shape Control: C_{60} on Ag(111)¹ T.J. STASEVICH², C.G. TAO, W.G. CULLEN, E.D. WILLIAMS, T.L. EINSTEIN, U. of Maryland, College Park — The decoration of hexagonal Ag/Ag(111) monolayer islands by chains of C₆₀, observed via STM at 300K, dramatically changes their shape and fluctuations. We tune coverage so that a single C₆₀ chain fully decorates each Ag island boundary.³ The C₆₀-induced rounding appears due to competing energetic and entropic effects.⁴ We estimate the Ag - C₆₀ and C₆₀ - C₆₀ attractions as ~0.13 eV and ~0.04 eV, respectively.⁵ The edge fluctuations are remarkable: 1) C₆₀ decoration does not notably impede the step-edge diffusion (SED) and 2) while the bare-island fluctuations are driven by SED, the decorated island has the signature of non-conserved dynamics, even though the C₆₀s remain at the island edge. We suggest that rapidly diffusing Ag atoms randomly attracting the nearby C₆₀s. Generalizations of our model show that both spherical and rectangular decorating molecules will similarly lower the energy of highly-kinked boundaries, leading to similar island shape changes.

¹Work supported by UM NSF-MRSEC grant DMR 05-20471.
²TJS now at LRBGE, NCI, NIH; CGT at U. Cal. Berkeley
³C.G. Tao et al., PRB 73, 125436 (2006); Nano Letters 7, 1495 (2007).
⁴T.J. Stasevich & TLE, (SIAM) Multiscale Model. Simul. 6, 90 (2007)
⁵T.J. Stasevich et al., submitted.

Theodore Einstein University of Maryland, College Park

Date submitted: 12 Dec 2007

Electronic form version 1.4