Abstract Submitted for the MAR08 Meeting of The American Physical Society

Binary mixture study of CF₄ and CF₃Cl on graphite¹ PETROS THOMAS, DANIEL VELAZQUEZ, GEORGE HESS, University of Virginia — In a binary mixture adsorption study of CF₄ and CF₃Cl on graphite from 60 K to 105 K, both the CF₃Cl - ν_4 and the CF₄ - ν_3 frequency shifts are measured using IRAS as the spreading pressure (chemical potential) of CF₄ is increased. Even though CF₃Cl has a much lower saturation vapor pressure (SVP) compared to CF₄ (at 80 K, SVP of CF₄ is \sim 70 mT and that of CF₃Cl is \sim 0.1 mT), the CF₄ either continuously displaces or adsorbs on top of ${\rm CF_3Cl}$ depending on the initial coverage of CF₃Cl on the graphite surface. For temperatures between 70 K and 105 K and lower coverage of CF₃Cl, where the molecules lie with their C - Cl axis nearly parallel with the surface, CF₄ continuously displaces CF₃Cl from the surface. For saturated monolayer coverage of CF₃Cl, where the C – Cl axis of the molecules are tilted relative to the surface, the CF₄ molecules adsorb on top of the CF₃Cl – HOPG template. At 60 K, the displacement of the low-coverage CF₃Cl is only partial and the orientation of the remaining CF₃Cl is tilted relative to the surface from a nearly flat position.

¹Work supported by NSF grant DMR-0305194

Petros Thomas University of Virginia

Date submitted: 26 Nov 2007 Electronic form version 1.4