Abstract Submitted for the MAR08 Meeting of The American Physical Society

Nature

of electrical conductivity threshold in bulk $(Ag_2Se)_x(GeSe_4)_{1-x}$ glasses C. HOLBROOK, P. BOOLCHAND, P. CHEN, Univ. Cincinnati, A. PRADEL, A. PIARRISTEGUY, Univ. of Montpellier — Bulk glasses were synthesized over the 0 < x < 25% range, and examined in FT-Raman, m-DSC, Electric Force Microscopy (EFM) and complex impedance experiments. Ag₂Se as an additive to GeSe₄ base glass leads to macroscopic phase separation as revealed by bimodal T_qs (base glass- $T_g = 168 \degree C$, additive glass $T_g = 230 \degree C$ at low x < 15%. In addition, at higher x (> 16%), a third T_g near 211 ° C is observed, and its strength increases with increasing x. EFM confirms the heterogeneous character of the glasses displaying a conducting phase that is segregated at low x (< 12%), and which percolates at higher x (> 16%). Electrical conductivity results show a step-like jump of nearly 2 orders of magnitude in the 16% < x < 20% range. Frequency of the Raman active corner-sharing mode of GeSe₄units (200 cm⁻¹) steadily decreases with increasing x, suggesting that the third phase $(T_a=211 \text{ C})$ most likely is a conducting GeSe₄-Ag₂Se phase. These data are consistent with a volume percolation² of solid electrolyte phases near $x \sim$ 16% contributing to the step-like jump in conductivity of glasses. ¹ V.Balan et al. J.Optoelectronics Adv. Mater. 8, 2112(2006). ²H. Scher and R.Zallen, J. Chem. Phys.53,3759(1970). * Supported by NSF grant DMR 04-56472

> Chad Holbrook Univ. Cincinnati

Date submitted: 29 Nov 2007

Electronic form version 1.4