MAR08-2007-002648

Abstract for an Invited Paper for the MAR08 Meeting of the American Physical Society

Inhomogeneous Superconductivity in $YBa_2Cu_3O_y$ and $La_{2-x}Sr_xCuO_4$ Above T_c^{-1} JEFF SONIER, Simon Fraser University

An exciting development in the immense research effort focused on resolving the origin of high- T_c superconductivity, is the growing experimental evidence for signatures of superconductivity in cuprate materials at temperatures far above T_c . Recent STM experiments on Bi₂Sr₂CaCu₂O_{8+ δ} have provided new insight into the precise nature of these pairing correlations, by revealing the occurrence of nanometre-sized pairing regions above T_c . Whether nanoscale inhomogeneous superconductivity is universal to the cuprates, and whether T_c is driven by Kosterlitz- Thouless physics or Josephson coupling between nanometre-sized superconducting regions are matters of current debate. Very recently we have used μ SR to probe the local response in the bulk of YBa₂Cu₃O_y and La_{2-x}Sr_xCuO₄ single crystals to a large applied magnetic field (H = 7 T). At temperatures above T_c , we detect a spatially inhomogeneous magnetic field that tracks the hole-doping dependences of both T_c and the superfluid density at T = 0 K. Our experiments are inconsistent with the field inhomogeneous response to field that presists beyond T = 200 K, indicating that the basic ingredients for superconductivity near room temperature already exist in spatially localized regions of this material. A lingering question is the origin of the weak magnetism detected earlier in YBa₂Cu₃O_y by zero-field μ SR, at temperatures below the pseudogap temperature T^* .

¹This work is supported by NSERC and the Canadian Institute for Advanced Research.