Abstract Submitted for the MAR08 Meeting of The American Physical Society

Tuning the ground state of CeNiGe₃ by applied magnetic field¹ E.D. MUN, S.L. BUD'KO, P.C. CANFIELD, Ames Lab / Iowa State University — We studied the thermal, magnetic and electrical transport properties of the ternary intermetallic system CeNiGe₃. In zero field, antiferromangeic order is observed below 5.1 K. In addition, at low temperatures, two pronounced metamagnetic transitions are also revealed. Applying magnetic fields along the magnetic easy direction leads to a suppression of the Neel temperature, with an apparent critical field $H_c \sim$ 32.5 kOe. The H - T phase diagram of CeNiGe₃ is consistent with a system that manifests field induced, quantum criticality. In the paramagnetic regime, above H_c , the resistivity at low temperatures exhibits an unusual temperature dependence. These results make CeNiGe₃ appear to be most similar to the isostructural, YbNiSi₃ [1].

[1] S. L. Bud'ko et al, Phys. Rev. B 75, 094433(2007).

¹Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

P.C. Canfield

Date submitted: 29 Nov 2007

Electronic form version 1.4