Modification on the melting of aluminum nanoclusters by a copper atom: heat capacities of CuAl$_{n-1}$ nanoalloys1 BAOPENG CAO, COLLEEN M. NEAL, ANNE M. STARACE, MARTIN F. JARROLD, Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, IN 47405 —

The melting of alloy clusters is currently of great interest and emerging as an important research area. In this talk, we report the synthesis and melting transition of CuAl$_{n-1}$ nanoalloy clusters ($n = 49 – 62$). Heat capacities and melting behaviors have been determined for CuAl$_{n-1}$ nanoalloy clusters using a novel collision induced dissociation method and are compared with those of pure aluminum cluster Al$_n^+$. All these nanoalloys present a first order melting transition at temperatures well-below the melting temperature of the bulk aluminum and the eutectic temperature of their bulk alloys. No eutectic characteristic is detected for these nanoalloy clusters. Upon substitution of Al with a single copper atom, the melting of pure aluminum clusters has been altered considerably. Size and charge effects of the doping atom on the melting of host nanoclusters are discussed.

1We thank the NSF for financial support.