Trapping carriers in organic field-effect transistors by metal nanoparticles

YU CHEN, MASAYA NISHIOKA, ALLEN GOLDMAN, School of Physics and Astronomy, University of Minnesota — A thin layer of metallic Au nanoparticles was coated on substrates that were used for organic field-effect transistors, in order to study how the motion of carriers in the organic was affected by metal/organic coupling. A huge reduction of mobility was observed, due to the increase of the characteristic activation energy. We speculate that this follows from the polaronic motion of carriers resulted from the organic/metal coupling, similar to the organic/dielectric coupling. Further experiments demonstrate that the performance of those devices can be adjusted by changing the configurations of nanoparticles.

This work was supported by the National Science Foundation through the University of Minnesota Materials Research Science and Engineering Center under Grant NSF/DMR-0212032 and by the U. S. Department of Energy under grant DE-FG02-02ER46004.