Abstract Submitted for the MAR08 Meeting of The American Physical Society

Properties of MgB₂ Thin Films Grown at Different Temperatures by Hybrid Physical-Chemical Vapor Deposition¹ MENNO VELDHORST², KE CHEN, Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, USA, CHE-HUI LEE, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA, QI LI, XIAOXING XI³, Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, USA — MgB₂ films grown by Hybrid Physical-Chemical Vapor Deposition (HPCVD) at high temperature excel in T_c , cleanness, and crystallinity. MgB₂ films have been grown at temperatures from 350 °C to 750 °C by a HPCVD system with separate Mg and substrate heaters. The 100 nm MgB₂ film grown on a (001) SiC substrate at 350 °C has a T_{c0} of about 36K and a residual resistance ratio of about 1.4. X-ray diffraction and atomic force microscopy show that the film is polycrystalline. The low-temperature grown MgB₂ films are promising as the top electrode for sandwich-type all-MgB₂ junctions to preserve the integrity of the barrier layer.

¹This work is supported by ONR.

²Also with The Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands ³Also with Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA

> Xiaoxing Xi The Pennsylvania State University

Date submitted: 26 Nov 2007

Electronic form version 1.4