Quantum Oscillations in the mixed state of d-wave superconductors

ASHOT MELIKYAN, Argonne National Laboratory, OSKAR VAFEK, National High Magnetic Field Lab and Florida State University — We show that the low-energy density of quasiparticle states in the mixed state of ultra-clean d-wave superconductors is characterized by pronounced quantum oscillations in the regime where the cyclotron frequency $\hbar \omega_c \ll \Delta_0$, the d-wave pairing gap. Such oscillations as a function of magnetic field B are argued to be due to the internodal scattering of the d-wave quasiparticles near wavevectors $(\pm k_D, \pm k_D)$ by the vortex lattice as well as their Zeeman coupling. The periodicity of the oscillations is set by the condition $k_D [\hbar c/(eB)]^{1/2} \equiv k_D' [\hbar c/(eB')]^{1/2} \pmod{2\pi}$. We find that there is additional structure within each period which grows in complexity as the Dirac node anisotropy increases.

A. M. was supported by the U.S. Dept. of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. O.V. was supported in part by the NSF grant DMR-00-84173.