Abstract Submitted for the MAR08 Meeting of The American Physical Society

Thermoelectric properties of Bi₂Sr₂Co₂O_y thin films grown by pulsed laser deposition SHUFANG WANG¹, VENIMADHAV ADYAM², SHENGMING GUO³, QI LI, XIAOXING XI⁴, Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, USA — Epitaxial and c-axis preferred oriented oxide thermoelectric Bi₂Sr₂Co₂O_y thin films have been deposited on LaAlO₃ (100), Al₂O₃(0001) and fused silica substrates using pulsed laser deposition. At room temperature, the Seebeck coefficient and resistivity are of the order of 125 μ V/K, 120 μ V/K, 110 μ V/K and 3 m Ω cm, 2 m Ω cm, 14 m Ω cm for the films on LaAlO₃ (100), Al₂O₃(0001) and silica substrates respectively. A large negative in-plane magnetoresistance (MR) is observed in the films at low temperatures, with a MR reaching 41% at 9 T and T=1.8 K in films on LaAlO₃ (100). We also observed a large bias current-dependent resistivity in the films at low temperature, which has been attributed to the suppression of spin-density-wave by electric field.

Shufang Wang The Pennsylvania State University

Date submitted: 29 Nov 2007 Electronic form version 1.4

¹Also with Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennslyvania, USA

²Also with Cryogenic Engineering centre, Indian Institute of Technology Kharagpur, 721302 India

³Also with Department of Physics, Tsinghua University, Beijing, China

⁴Also with Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennslyvania, USA