Abstract Submitted for the MAR08 Meeting of The American Physical Society

The low-temperature 2D mobility for metallic p-type GaAs Quantum Well THEODORE CASTNER¹, University of Rochester — At T < 1.2K the mobility $\mu(T)$ is determined by charged trap ionized impurity scattering (iis) and T-dependent screening [1]. $\mu(T)$ is calculated with $\langle \tau(E) \rangle$ given by an empirical expression $\tau = \tau_0 x/[x + C \tanh(\eta/2)] [x = E/kT, \eta = T_F/T$ and a 2D DOS that features a pseudogap. $\mu(T)$ exhibits a minimum at $T_m = T_F/2.25$ and increases slowly for $T > T_m$. The physical reason for this unusual increase in $\mu(T)$ is explained. The coefficient C is directly related to $\mu(0)/\mu(T_m [4.0 > \text{ratio} > 3.6$ for p-type GaAs data [2]]. The T-dependent screening $\kappa_2(T) = s(T) \kappa_2(0)$ and s(T)is given by $[\mu(T)-\mu_m]/[\mu(0)-\mu_m]$. This s(T) allows the determination of T* $[d\sigma/dT = 0]$ where T* is slightly less than T_m . The data [2] is an example of ideal 2D behavior. The role of interactions for T $< T_m$ and T $> T_m$ will be discussed. [1] F. Stern, PRL 44, 1469 (1980); [2] X.P.A. Gao et al., PRL 93, 256402 (2004).

¹emeritus

Theodore Castner University of Rochester

Date submitted: 29 Nov 2007

Electronic form version 1.4