Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

Remarkably large field dependences of the thermodynamic and transport properties of PtSn$_4$. P.C. CANFIELD, S.L. BUD’KO, E.D. MUN, H. KO, G.D. SAMOLYUK, Ames Lab / Iowa State University — PtSn$_4$ is a known, binary, intermetallic compound that forms as a result of a deeply paritectic reaction. It’s reported to have an orthorhombic crystal structure with lattice parameters $a = 6.42$, $b = 11.4$, $c = 6.39$ Å. Exceptionally low residual resistivity single crystals of PtSn$_4$ have been grown out of excess Sn (with RRR values larger than 1000) and a detailed study of their field dependent properties have been made. The highlights of our results can be summarized as follows: (a) PtSn$_4$ manifests a huge, low temperature magnetoresistance of 10^5 %, for an applied field of 5 T, that rises to 10^6 % for 14 T; (b) PtSn$_4$ manifests dramatic and clearly resolved oscillations in the magnetization that, for fields below 7T, can be clearly resolved for temperatures as high as 20 K; (c) PtSn$_4$ manifests dramatic and clear oscillations in electrical resistivity, that for fields below 14 T, can be clearly resolved for temperatures as high as 10 K.

1Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

2S. P. M. B. A.

P.C. Canfield

Date submitted: 30 Nov 2007

Electronic form version 1.4