Charged Impurity Scattering in Graphene1 MASA ISHIGAMI, JIANHAO CHEN, C. JANG, E.D. WILLIAMS, M.S. FUHRER, Physics Department, Materials Research and Engineering Center, and Center for Nanophysics and Advanced Materials, University of Maryland, College Park — We have measured the impact of charged impurity scattering on the transport properties of graphene sheets \cite{1}. We vary the density of adsorbed potassium atoms in our experiment up to $5 \times 10^{12} K/cm^2$ on the surface of graphene based-devices which are otherwise devoid of any surface adsorbates \cite{2} in ultra high vacuum environment. Adsorbed potassium decreases the charge carrier mobility, renders the gate-dependent conductivity linear, shifts the minimum conductivity point in gate voltage, broadens the width of minimum conductivity region, and lowers the minimum conductivity. Our results are in qualitative agreement with a recent Boltzmann transport calculation \cite{3}. New features, such as asymmetric response of electron-hole mobility and the observation of a “residual” conductivity (the extrapolation of the linear gate-voltage dependent conductivity to the minimum conductivity point) near $2 e^2/h$, indicate transport properties beyond the simple Boltzmann picture. \cite{1} J.H.Chen et al., http://xxx.lanl.gov/abs/0708.2408. \cite{2} M.Ishigami et al., Nano Letters, 7, 1643 (2007). \cite{3} S. Adam et al., PNAS 104, 18392 (2007).

1MI presently at Department of Physics, University of Central Florida.