Abstract Submitted for the MAR08 Meeting of The American Physical Society

Coulomb Impurity Screening in Graphene VALERI KOTOV, Boston University — I will discuss the vacuum polarization charge density around a Coulomb impurity with charge Z|e|. Perturbation theory in powers of $Z\alpha$ (where $\alpha = e^2/v_F$ is the effective coupling constant in graphene), shows that the polarization charge is localized at the impurity site. An exact calculation, based on the Green's function in a Coulomb field, leads to a non-perturbative result, valid to all orders in $Z\alpha$ [1]. Taking into account also electron-electron interactions in the Hartree approximation, we solve the problem self-consistently in the subcritical regime, where the impurity has an effective charge Z_{eff} , determined by the localized induced charge. We find that an impurity with bare charge Z = 1 remains subcritical, $Z_{\text{eff}}\alpha < 1/2$, for any α , while impurities with Z = 2,3 and higher can become supercritical at certain values of α .

[1] I.S. Terekhov, A.I. Milstein, V.N. Kotov, and O.P. Sushkov, arXiv:0708.4263.

Valeri Kotov Boston University

Date submitted: 26 Nov 2007

Electronic form version 1.4