Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

Polarized Photoluminescence from Single Wurtzite and Zincblende InP Nanowires

A. MISHRA, L.V. TITOVA, T.B. HOANG, H.E. JACKSON, L.M. SMITH, University of Cincinnati, J.M. YARRISON-RICE, Miami University, Y. KIM, H.J. JOYCE, Q. GAO, H.H. TAN, C. JAGADISH, Australian National University — We use polarized photoluminescence spectroscopy of single InP nanowires to compare the optical properties of vapor-liquid-solid growth of single zincblende (ZB) and wurtzite (W) nanowires. Since ZB and W nanowires have different symmetries and selection rules, their optical properties should also be different. The emission from single W nanowires is observed to be ~80 meV higher than for ZB nanowires. Low temperature polarization measurement shows that ZB nanowires are strongly polarized along the nanowire axis, while the W nanowires are polarized perpendicular to the NW axis. The temperature dependence of the ZB and W NW emissions are compared with a bulk InP epilayer. Apart from the 80meV shift in bandgap, the temperature dependencies are similar.

Support for this work was provided by NSF (#0701703) and the Australian Research Council.

Leigh Smith
University of Cincinnati

Date submitted: 30 Nov 2007

Electronic form version 1.4