Abstract Submitted
for the MAR08 Meeting of The American Physical Society

Abstract

Effects of Quenched Random Gap Inhomogeneities on the Specific Heat of a Model High- T_{c} Superconductor ${ }^{1}$ DAVID STROUD, Department of Physics, Ohio State University, Columbus, OH 43210, DANIEL VALDEZBALDERAS, Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 - In many cuprate superconductors, scanning tunneling microscopy experiments show that the energy gap has substantial quenched random spatial variations. We have calculated how such gap variations affect the specific heat C_{V} in a model for the most anisotropic of these materials. The model is based on a Ginzburg-Landau free energy functional in which position- dependent coefficients are used to model quenched inhomogeneity. Using Monte Carlo simulations, we evaluate C_{V} for different disorder strengths. Near optimal doping, we find that quenched gap disorder substantially broadens the specific heat anomaly near the phase ordering transition T_{c}, compared to that due to thermal fluctuations alone. But for strongly underdoped samples, in which T_{c} is greatly separated from the pseudogap temperature $T_{c 0}$, disorder only slightly increases the broadening beyond the already substantial amount due to thermal fluctuations. We compare these results to recent experiments.

${ }^{1}$ Supported by NSF and DOE

David Stroud
Department of Physics, Ohio State University, Columbus, OH 43210

