Abstract Submitted for the MAR08 Meeting of The American Physical Society

Force-Detected NMR Study of Single-Crystal MgB₂ using Ultrasensitive Oscillators* HAN-JONG CHIA, MARK MONTI, SAMARESH GUCH-HAIT, JOHN MARKERT, Physics, University of Texas at Austin, JAE-HYUK CHOI, Mechanical Metrology Group, Division of Physical Metrology, KRISS, Korea, SUNG-IK LEE, Pohang University, Korea — MgB₂ is a unique superconductor with a relatively high T_c and two nearly independent electronic bands. An NMR study of ${}^{11}B$ in MgB₂ using polycrystalline samples [1] did not observe any two-band effects, nor a Hebel-Slichter coherence peak, possibly due to large H_{c2} anisotropy (and thus a distribution of T_c 's). Anisotropic NMR studies of MgB₂ have proven difficult due to the small size (~ 10 μ m) of high-quality crystals. A large-singlecrystal conventional NMR study [2] could not probe the superconducting state due to line broadening. We have set out to use the exquisite sensitivity of Nuclear Magnetic Resonance Force Microscopy (NMRFM) to probe the behavior of ¹¹B in single crystal MgB₂. We have fabricated ultrasensitive mechanical oscillators using e-beam lithography to facilitate detection of the weak ¹¹B resonance; these have resonance frequencies of 1–10 kHz, spring constants of $\sim 10^{-4}$ N/m, and quality factors >3000 at 77 K. We report our initial detection of the ¹¹B nuclear resonance and our plans to study relaxation rates in single crystal MgB₂. [1] H. Kotegawa etal., Phys. Rev. Lett. 87, 127001 (2001). [2] S. Strässle et al., Physica C 466, 168 (2007). *Supported by NSF DMR-0605828 and DGE-0549417.

Han-Jong Chia

Date submitted: 30 Nov 2007

Electronic form version 1.4