Abstract Submitted for the MAR08 Meeting of The American Physical Society

Nodal d + id pairing and topological phases on the triangular lattice: unconventional superconducting state of Na_xCoO₂·yH₂O SEN ZHOU, Florida State University, ZIQIANG WANG, Boston College — We show that the finite angular momentum pairing on the triangular lattice has point nodes in the complex gap function. A topological quantum phase transition takes place through a gapless critical state at a specific carrier density x_c where the normal state Fermi surface crosses these isolated nodes. For spin singlet pairing, we show that the second nearest neighbor d + id pairing is the dominate superconducting channel. The gapless critical state appears at $x_c \simeq 0.25$ for the sodium cobaltates. It has six Dirac points and is topologically nontrivial with a T^3 spin relaxation rate below T_c . This theory provides a consistent explanation for the unconventional superconducting state of Na_xCoO₂ · yH₂O.

> Sen Zhou Florida State University

Date submitted: 26 Nov 2007

Electronic form version 1.4